843 independent reflections

 $R_{\rm int} = 0.064$

797 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,5-Dihydroxybenzaldehyde

Tonia Kretz, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 1 November 2007: accepted 5 November 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.084; data-to-parameter ratio = 8.5.

The title compound, C7H6O3, features a planar molecule (r.m.s. deviation for all non-H atoms = 0.019 Å). Geometric parameters are in the usual ranges. Whereas one hydroxyl group forms an intramolecular hydrogen bond with the carbonyl group, the other forms an intermolecular hydrogen bond with the carbonyl group of a symmetry-equivalent molecule. The molecules crystallize in planes parallel to the bc plane.

Related literature

For related literature, see: Kretz et al. (2006, 2007); Lerner et al. (2006); Margraf et al. (2006).

Experimental

Crystal data

 $C_7H_6O_3$ $M_r = 138.12$ Orthorhombic, P2₁2₁2₁ a = 6.7544 (7) Å b = 8.2240 (9) Å c = 11.4040 (13) Å

 $V = 633.47 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 173 (2) K $0.49 \times 0.32 \times 0.29$ mm

Data collection

Stoe IPDS II two-circle	
diffractometer	
Absorption correction: none	
7904 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.084$	independent and constrained
S = 1.11	refinement
843 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
99 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4\cdots O21^{i}$	0.95 (3)	1.82 (3)	2.7382 (15)	163 (2)
$O1-H1\cdots O21$	0.98 (2)	1.73 (3)	2.6501 (16)	155 (2)

Symmetry code: (i) x, y - 1, z.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2016).

References

- Kretz, T., Bats, J. W., Lerner, H.-W. & Wagner, M. (2007). Z. Naturforsch. Teil B, 62, 66-74.
- Kretz, T., Bats, J. W., Losi, S., Wolf, B., Lerner, H.-W., Lang, M., Zanello, P. & Wagner, M. (2006). Dalton Trans. pp. 4914-4921.
- Lerner, H.-W., Margraf, G., Kretz, T., Schiemann, O., Bats, J. W., Dürner, G., Fabrizi de Biani, F., Zanello, P., Bolte, M. & Wagner, M. (2006). Z. Naturforsch. Teil B, 61, 252-264.
- Margraf, G., Kretz, T., Fabrizi de Biani, F., Laschi, F., Losi, S., Zanello, P., Bats, J. W., Wolf, B., Remović-Langer, K., Lang, M., Prokofiev, A., Assmus, W., Lerner, H.-W. & Wagner, M. (2006). Inorg. Chem. 45, 1277-1288.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4673 [doi:10.1107/S160053680705595X]

2,5-Dihydroxybenzaldehyde

T. Kretz, H.-W. Lerner and M. Bolte

Comment

Recently, we have extended our studies to redox-active ligands which can be used to influence the electrochemical reactivity of transition metals since their redox activity is expanded upon complexation (Lerner *et al.*, 2006; Kretz *et al.*, 2007). The resulting complexes can undergo multi-electron transfer reactions which are the sum of the oxidation state changes of the metal center and the ligand (Margraf *et al.*, 2006; Kretz *et al.*, 2006). Due to their electrochemical reversibility, hydroquinone / quinone derivatives are candidates for redox-active ligands (Lerner *et al.*, 2006; Kretz *et al.*, 2007). In our studies we have used Schiff-Base derivatives which can conveniently be achieved by reaction of amines and aldehyde derivatives (Margraf *et al.*, 2006; Kretz *et al.*, 2006; Kretz *et al.*, 2007). Thereby 2,5-dihydroxybenzaldehyde represents one of the starting materials. Single crystals of 2,5-dihydroxybenzaldehyde were obtained by recrystallization from toluene.

The title compound, $C_7H_6O_3$, features a planar molecule (r.m.s. deviation for all non-H atoms 0.019 Å). Geometric parameters are in the usual ranges. Whereas one hydroxyl group forms an intramolecular hydrogen bond with the carbonyl group, the other one forms an intermolecular hydrogen bond with the carbonyl group of a symmetry equivalent molecule. The molecules crystallize in planes parallel to the *bc* plane.

Experimental

Commercially available 2,5-dihydroxybenzaldehyde (1.38 g) was recrystallized from toluene (20 ml).

Refinement

H atoms bonded to C were refined with fixed individual displacement parameters $[U(H) = 1.2 U_{eq}(C)]$ using a riding model with C—H = 0.93 Å. The H atoms bonded to O were refined isotropically. In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and $\Delta f'$ set to zero.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.

2,5-Dihydroxybenzaldehyde

Crystal data

C₇H₆O₃ $M_r = 138.12$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.7544 (7) Å b = 8.2240 (9) Å c = 11.4040 (13) Å V = 633.47 (12) Å³ Z = 4

Data collection

Stoe IPDS II two-circle diffractometer	797 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.064$
Monochromator: graphite	$\theta_{\text{max}} = 27.3^{\circ}$
T = 173(2) K	$\theta_{\min} = 3.9^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: none	$k = -10 \rightarrow 10$
7904 measured reflections	$l = -14 \rightarrow 14$
843 independent reflections	

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.084$ S = 1.11

843 reflections

99 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Experimental.;

 $F_{000} = 288$ $D_x = 1.448 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11598 reflections $\theta = 3.8-27.4^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 173 (2) KBlock, yellow $0.49 \times 0.32 \times 0.29 \text{ mm}$

H atoms treated by a mixture of

independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0573P)^{2} + 0.0216P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.13 \text{ e} \text{ Å}^{-3}$ Extinction correction: none **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.1189 (2)	0.78697 (16)	0.40573 (13)	0.0313 (3)
C2	0.11078 (18)	0.80898 (15)	0.52767 (12)	0.0291 (3)
C3	0.1003 (2)	0.67401 (16)	0.60198 (12)	0.0303 (3)
Н3	0.0964	0.6895	0.6845	0.036*
C4	0.0956 (2)	0.51869 (15)	0.55672 (12)	0.0306 (3)
C5	0.1033 (2)	0.49826 (15)	0.43446 (12)	0.0324 (3)
H5	0.0997	0.3916	0.4025	0.039*
C6	0.1159 (2)	0.62973 (16)	0.36011 (12)	0.0335 (3)
H6	0.1225	0.6133	0.2777	0.040*
01	0.13038 (18)	0.91338 (14)	0.32977 (10)	0.0418 (3)
H1	0.119 (3)	1.005 (3)	0.384 (2)	0.064 (7)*
O4	0.0787 (2)	0.39039 (12)	0.63213 (10)	0.0435 (3)
H4	0.097 (4)	0.301 (3)	0.581 (2)	0.070 (7)*
C21	0.1097 (2)	0.97036 (17)	0.57875 (14)	0.0350 (3)
H21	0.1055	0.9793	0.6618	0.042*
O21	0.11390 (18)	1.09707 (11)	0.52045 (11)	0.0424 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	cement parameters $(Å^2)$
--	---------------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0284 (6)	0.0292 (6)	0.0363 (7)	-0.0003 (6)	-0.0025 (5)	0.0039 (5)
C2	0.0263 (5)	0.0247 (6)	0.0363 (7)	0.0001 (6)	-0.0010 (5)	-0.0004 (5)
C3	0.0330 (6)	0.0271 (6)	0.0307 (6)	0.0008 (5)	-0.0015 (5)	-0.0021 (5)
C4	0.0320 (6)	0.0243 (6)	0.0356 (6)	0.0006 (5)	-0.0012 (5)	0.0025 (5)
C5	0.0341 (6)	0.0262 (6)	0.0371 (6)	0.0005 (5)	-0.0014 (5)	-0.0061 (5)
C6	0.0346 (6)	0.0351 (7)	0.0306 (6)	-0.0011 (6)	0.0001 (6)	-0.0032 (5)
01	0.0508 (6)	0.0349 (5)	0.0396 (5)	-0.0017 (5)	-0.0021 (5)	0.0118 (4)
O4	0.0649 (8)	0.0240 (5)	0.0416 (5)	0.0002 (5)	-0.0014 (5)	0.0041 (4)
C21	0.0347 (6)	0.0252 (6)	0.0449 (7)	0.0011 (6)	0.0012 (6)	-0.0036 (5)
O21	0.0462 (5)	0.0231 (5)	0.0580 (7)	0.0010 (4)	0.0009 (5)	0.0017 (5)

Geometric purumeters (A,)	Geometric	parameters	(Å,	°)
----------------------------	-----------	------------	-----	----

C1—O1	1.3554 (16)	C4—C5	1.405 (2)
C1—C6	1.3941 (17)	C5—C6	1.3766 (19)

supplementary materials

C1—C2	1.4034 (18)	С5—Н5	0.9500
C2—C3	1.3982 (19)	С6—Н6	0.9500
C2—C21	1.4494 (17)	O1—H1	0.98 (2)
C3—C4	1.3781 (17)	O4—H4	0.95 (3)
С3—Н3	0.9500	C21—O21	1.2364 (18)
C4—O4	1.3660 (16)	C21—H21	0.9500
O1—C1—C6	118.28 (12)	C6—C5—C4	121.30 (11)
O1—C1—C2	122.45 (12)	С6—С5—Н5	119.4
C6—C1—C2	119.27 (12)	С4—С5—Н5	119.4
C3—C2—C1	120.01 (12)	C5—C6—C1	119.97 (12)
C3—C2—C21	118.89 (12)	С5—С6—Н6	120.0
C1—C2—C21	121.10 (12)	С1—С6—Н6	120.0
C4—C3—C2	120.66 (12)	C1—O1—H1	100.7 (14)
С4—С3—Н3	119.7	C4—O4—H4	101.5 (16)
С2—С3—Н3	119.7	O21—C21—C2	123.75 (13)
O4—C4—C3	118.82 (12)	O21—C21—H21	118.1
O4—C4—C5	122.37 (12)	C2—C21—H21	118.1
C3—C4—C5	118.79 (12)		
O1—C1—C2—C3	-179.61 (11)	O4—C4—C5—C6	178.53 (12)
C6—C1—C2—C3	0.2 (2)	C3—C4—C5—C6	0.2 (2)
O1—C1—C2—C21	1.4 (2)	C4—C5—C6—C1	-0.7 (2)
C6—C1—C2—C21	-178.79 (12)	O1—C1—C6—C5	-179.65 (12)
C1—C2—C3—C4	-0.8 (2)	C2—C1—C6—C5	0.5 (2)
C21—C2—C3—C4	178.24 (13)	C3—C2—C21—O21	-178.30 (13)
C2—C3—C4—O4	-177.85 (12)	C1—C2—C21—O21	0.7 (2)
C2—C3—C4—C5	0.6 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O4—H4···O21 ⁱ	0.95 (3)	1.82 (3)	2.7382 (15)	163 (2)
O1—H1…O21	0.98 (2)	1.73 (3)	2.6501 (16)	155 (2)
Symmetry codes: (i) $x, y=1, z$.				

